Relationship between Sociocultural Characterization in Regular Basic Education Students from High Andean Zones and their Interaction in Educational Metaverses
DOI:
https://doi.org/10.56294/mr2024122Keywords:
Sociocultural Characterization., Regular Basic Education Students, High Andean Zones, Interaction, Educational MetaversesAbstract
Introduction: The sociocultural characterization of students includes factors such as ethnicity, language, beliefs, social practices, family environment and other elements that affect their perception of knowledge and technology; for environments to be effective, it is essential to consider the sociocultural characterization of students, since the factors profoundly affect the ability to adapt to new teaching methods.
Objective: To determine the relationship between sociocultural characterization in regular basic education students from high Andean areas and their interaction in educational metaverses.
Methods: A quantitative and correlational approach was adopted with a non-experimental design, focusing on 376 university students who had taken at least one semester in virtual mode. Data collection was done through structured surveys with Likert-type scales to assess the use of AI tools and the level of adaptation of the students.
Results: The results indicated a significant relationship of (r=0.973) and a value of (p=0.000) between the study variables.
Conclusions: It was concluded that AI is key to personalize educational experiences, improving accessibility and interactivity. In addition, the need to avoid over-reliance on AI tools and the importance of fostering interdisciplinary collaboration and real-time feedback to contribute to the continuous improvement of educational environments were highlighted.
References
1. Cuestas AD. Diseño de materiales didácticos: DUA, multimodalidad y educación inclusiva. Puertas Abiertas [Internet]. 2015;11. Available from: http://www.puertasabiertas.fahce.unlp.edu.ar
2. Wojcicki E, T. Izumil L. Moonshots en la educación: Nuevas Tecnologías y Aprendizaje Mixto en El Aula [Internet]. Taurus; 2016. 332 p. Available from: https://campus.primariamiguelcrisantes.edu.mx/wp-content/uploads/2022/02/Moonshots-en-la-educacion.pdf
3. Espósito AVL, Korzeniowski CG, Santini Bertoldi M. Normas preliminares del Test de Desarrollo Psicomotor (TEPSI) para niños argentinos de 3 y 4 años. Lib Rev Peru Psicol. 2018;24(1):9–27.
4. Macías Figueroa YG, Vigueras Moreno JA, Rodríguez Gámez M. A School with Multiple Intelligences : Vision to an Innovative Proposal. Rev Cuba Educ Super. 2021;40(1).
5. Nadeem W, Ashraf AR, Shahid S. What drives metaverse retail environments (non)usage? A behavioral reasoning theory perspective. Technol Forecast Soc Change [Internet]. 2025;212(December 2024):123945. Available from: https://doi.org/10.1016/j.techfore.2024.123945
6. Santilli T, Ceccacci S, Mengoni M, Giaconi C. Virtual vs. traditional learning in higher education: A systematic review of comparative studies. Comput Educ [Internet]. 2025;227(December 2024):105214. Available from: https://doi.org/10.1016/j.compedu.2024.105214
7. Jin SV, Ryu E. Unraveling the dynamics of digital equality and trust in AI-empowered metaverses and AI-VR-convergence. Technol Forecast Soc Change [Internet]. 2025;210(November 2024):123877. Available from: https://doi.org/10.1016/j.techfore.2024.123877
8. Al-Adwan AS, Alsoud M, Li N, Majali T, Smedley J, Habibi A. Unlocking future learning: Exploring higher education students’ intention to adopt meta-education. Heliyon. 2024;10(9).
9. Nguyen AHD, Le TT, Dang TQ, Nguyen LT. Understanding metaverse adoption in education: The extended UTAUMT model. Heliyon [Internet]. 2024;10(19):e38741. Available from: https://doi.org/10.1016/j.heliyon.2024.e38741
10. Lo AWT. The educational affordances and challenges of generative AI in Global Englishes-oriented materials development and implementation: A critical ecological perspective. System [Internet]. 2025;130(January):103610. Available from: https://doi.org/10.1016/j.system.2025.103610
11. Pentangelo V, Di Dario D, Lambiase S, Ferrucci F, Gravino C, Palomba F. SENEM : A software engineering-enabled educational metaverse. Inf Softw Technol [Internet]. 2024;174(February):107512. Available from: https://doi.org/10.1016/j.infsof.2024.107512
12. Al-Busaidi AS, Raman R, Hughes L, Albashrawi MA, Malik T, Dwivedi YK, et al. Redefining boundaries in innovation and knowledge domains: Investigating the impact of generative artificial intelligence on copyright and intellectual property rights. J Innov Knowl [Internet]. 2024;9(4):100630. Available from: https://doi.org/10.1016/j.jik.2024.100630
13. Daradkeh M, Dawoud DW, Ismail S, Mansoor W. Computers in Human Behavior Reports Perceptions , attitudes , and demographic influences on metaverse : A comprehensive investigation. Comput Hum Behav Reports [Internet]. 2024;15(July):100441. Available from: https://doi.org/10.1016/j.chbr.2024.100441
14. Großmann C, Merfeld K, Klein JF, Föller F, Henkel S. Onto the light side of sharing: Using the force of blockchain. J Bus Res. 2024;175(November 2022).
15. Salingaros NA. Living geometry, AI tools, and Alexander’s 15 fundamental properties. Remodel the architecture studios! Front Archit Res [Internet]. 2025;(xxxx). Available from: https://doi.org/10.1016/j.foar.2025.01.002
16. Undheim TA. In search of better methods for the longitudinal assessment of tech-derived X-risks: How five leading scenario planning efforts can help. Technol Soc [Internet]. 2024;77(March):102505. Available from: https://doi.org/10.1016/j.techsoc.2024.102505
17. Thi T, Trang N, Chien P, Thi G, Nguyen T. Factors driving Gen Z ’ s news engagement on TikTok : A hybrid analysis through CB-SEM and PLS-SEM. Comput Hum Behav Reports [Internet]. 2025;18(November 2024):100645. Available from: https://doi.org/10.1016/j.chbr.2025.100645
18. Mustofa RH, Kuncoro TG, Atmono D, Hermawan HD, Sukirman. Extending the technology acceptance model: The role of subjective norms, ethics, and trust in AI tool adoption among students. Comput Educ Artif Intell [Internet]. 2025;8(July 2024):100379. Available from: https://doi.org/10.1016/j.caeai.2025.100379
19. Mandal S, Kumar R, Basu B, Tiwari A. Exploring the orientation towards metaverse gaming: Contingent effects of VR tools usability, perceived behavioural control, subjective norms and age. J Innov Knowl [Internet]. 2025;10(1):100632. Available from: https://doi.org/10.1016/j.jik.2024.100632
20. Hernández-Sampieri R, Mendoza-Torres CP. Metodología de la investigación: las tres rutas cuantitativa, cualitativa y mixta. Vol. 1, Mc Graw Hill. 2018. 714 p.
21. Ñaupas H, Paitán, Marcelino Raúl Valdivia Dueñas, Jesús Josefa Palacios Vilela HERD. Metodología de la investigación cuantitativa-cualitativa y redacción de la tesis. Vol. 53, Journal of Chemical Information and Modeling. 2018. 1689–1699 p.
22. Arias J, Villasís M, Miranda M. el protocolo de la investigacion III: la poblacion de estudio. Rev Alerg México. 2016;63(02):201–6.
23. Hernández-Sampieri R, Mendoza C. Metodología de la investigación. Las rutas cuantitativa, cualitativa y mixta Las rutas Cuantitativa Cualitativa y Mixta. McGRAW-HILL Interamericana Editores S.A. de C.V. 2020. 753 p.
Published
Issue
Section
License
Copyright (c) 2024 Francisco Zúñiga Pastor, Yesenia Tania Loayza Apaza, Milusca Jacqueline Velarde-Tejada, Alvaro Rafael Barrientos-Alfaro, Rafael Romero-Carazas, David Hugo Bernedo-Moreira (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.