Artificial intelligence tools for safety and health systems at work
DOI:
https://doi.org/10.56294/mr2024.129Keywords:
Artificial intelligence, Occupational health, Industrial safety, Management systemAbstract
A systematic review of the literature was carried out, key technologies such as machine learning, computer vision, wearable devices and intelligent monitoring systems are identified. These tools are applied in accident prevention, continuous monitoring of workers' health, automation of surveillance and improvement of safety training. The implementation of predictive AI makes it possible to identify risks and prevent accidents, reducing the incident rate and improving safety. Wearable devices and biometric sensors are effective in the early detection of occupational diseases and musculoskeletal disorders. Additionally, automating surveillance with computer vision optimizes compliance with safety standards, such as the use of personal protective equipment (PPE), easing the operational burden on security managers. Despite its benefits, the implementation faces ethical and technical challenges, such as data privacy, algorithm transparency, and worker training. The need to develop clear regulations and an ethical approach in the adoption of AI is highlighted. In conclusion, AI tools have great potential to transform occupational health and safety systems, but it is essential to address ethical challenges and technicians to guarantee its responsible and effective implementation.
References
Abella, A. H. (2024). Retos de la digitalización de la Seguridad y Salud en el Trabajo en Colombia: digitalización, inteligencia artificial y gestión de riesgos. Revista Fasecolda, (195), 36-39.
Al-shanableh N, Alzyoud M, Al-husban RY, Alshanableh NM, Al-Oun A, Al-Batah MS, et al. Advanced Ensemble Machine Learning Techniques for Optimizing Diabetes Mellitus Prognostication: A Detailed Examination of Hospital Data. Data and Metadata 2024;3:.363-.363. https://doi.org/10.56294/dm2024.363.
Area-Moreira, M., Del Prete, A., Sanabria-Mesa, A. L., & Sannicolás-Santos, M. B. (2024). No todas las herramientas de IA son iguales. Análisis de aplicaciones inteligentes para la enseñanza universitaria. Digital Education Review, (45), 141-149.
Asgarova B, Jafarov E, Babayev N, Abdullayev V, Singh K. Artificial neural networks with better analysis reliability in data mining. LatIA 2024;2:111–111. https://doi.org/10.62486/latia2024111.
Asgarova B, Jafarov E, Babayev N, Abdullayev V, Singh K. Improving Cleaning of Solar Systems through Machine Learning Algorithms. LatIA 2024;2:100–100. https://doi.org/10.62486/latia2024100.
Asto, J. A. R., Villanueva, M. T., & Rodríguez, S. M. S. (2024). Principales Herramientas de la Inteligencia Artificial para Industrias Una revisión de Literatura. Innovation and Software, 5(2), 44-63.
Ávila, J. D. (2024). La inteligencia artificial en la educación y su impacto en el mundo del trabajo. Argumentos y usos tecnopedagógicos de la Inteligencia Artificial, 158.
Bolívar, F. A. J., & david Hinojoza–Montañez, S. (2023). Aplicabilidad de la inteligencia artificial en Colombia para prevenir los riesgos laborales: revisión sistemática. Revista tajamar, 2(2), 3-17.
Buitrago MV, Vargas OLT. Classification of tomato ripeness in the agricultural industry using a computer vision system. LatIA 2024;2:105–105. https://doi.org/10.62486/latia2024105.
Cadillo, R. I. T. (2023). Los riesgos y los desafíos que enfrentan los trabajadores frente al uso de la inteligencia artificial en el trabajo. Revista de Derecho Procesal del Trabajo, 6(7), 289-313.
Caro-Delgado, Á. G., Lozano-Ruiz, Á. G., & Perdomo-Jurado, Y. E. (2020). Telepsicología: retos y perspectivas una revisión sistemática de literatura. Catálogo Editorial Politecnico Grancolombiano, 184-212.
Conica, S., Browne, N., & Danyll, R. (2024). Leveraging Machine Learning to Enhance Occupational Safety and Health in Hospital. Safety and Health for Medical Workers, 1(2), 78-94.
Constantin, A., Borda, C., Luchian, C., Bulboacă, E., Gheorghe, M., & Radu, C. (2024). Impact Of Artificial Intelligence On Occupational Health And Safety. Fiability & Durability/Fiabilitate si Durabilitate, 33(1).
del Toro Reyes, L., & Alfonso, J. E. L. (2023). La inteligencia artificial y la gestión de los recursos humanos. GADE: Revista Científica, 3(4), 289-298.
El-Helaly, M. (2024). Artificial Intelligence and Occupational Health and Safety, Benefits and Drawbacks. La Medicina del Lavoro, 115(2).
Ellahham, S., Ellahham, N., & Simsekler, M. C. E. (2020). Application of artificial intelligence in the health care safety context: opportunities and challenges. American Journal of Medical Quality, 35(4), 341-348.
Espada, J. L. (2024). La inteligencia artificial para la mejora de la seguridad y salud laboral y su encaje en el marco regulatorio europeo. Trabajo y derecho: nueva revista de actualidad y relaciones laborales, (19), 9.
Espitia Ibarra, M., Plaza Gómez, M. T., & Hernández Riaño, H. E. (2020). Solución al problema de la selección de medidas de seguridad industrial dentro una empresa usando inteligencia artificial. Revista Espacios, 798, 1015.
Ferrara, M., Bertozzi, G., Di Fazio, N., Aquila, I., Di Fazio, A., Maiese, A., ... & La Russa, R. (2024). Risk management and patient safety in the artificial intelligence era: a systematic review. In Healthcare, 12(5), 549.
Fisher, E., Flynn, M. A., Pratap, P., & Vietas, J. A. (2023). Occupational safety and health equity impacts of artificial intelligence: a scoping review. International journal of environmental research and public health, 20(13), 6221.
Gallent-Torres, C., Romero, B. A., Adillón, M. V., & Foltýnek, T. (2024). Inteligencia Artificial en educación: entre riesgos y potencialidades. Praxis educativa, 19.
García, M. D. C. M. (2022). La inteligencia artificial para el entorno laboral. Un enfoque en la predicción de accidentes. e-Revista Internacional de la Protección Social, 7(1), 84-101.
Granados Ferreira, J. (2022). Análisis de la inteligencia artificial en las relaciones laborales. Revista CES Derecho, 13(1), 111-132.
Habli, I., Lawton, T., & Porter, Z. (2020). Artificial intelligence in health care: accountability and safety. Bulletin of the World Health Organization, 98(4), 251.
Herrera, L. G. J. (2021). Inteligencia artificial como potencia de herramienta en salud. Revista de Información cientÃfica para la Dirección en Salud. INFODIR, (36).
Howard, J. (2019). Artificial intelligence: Implications for the future of work. American journal of industrial medicine, 62(11), 917-926.
Ispășoiu, A., Milosan, I., & Gabor, C. (2024). Improving Workplace Safety and Health Through a Rapid Ergonomic Risk Assessment Methodology Enhanced by an Artificial Intelligence System. Applied System Innovation, 7(6), 103.
Iyengar MS, Venkatesh R. A Brief communication on Virtual Reality (VR) in Hospitality Industry & Global Travel and Tourism. Gamification and Augmented Reality 2024;2:40–40. https://doi.org/10.56294/gr202440.
Jarota, M. (2023). Artificial intelligence in the work process. A reflection on the proposed European Union regulations on artificial intelligence from an occupational health and safety perspective. Computer Law & Security Review, 49, 105825.
Jiménez Herrera, L. G. (2021). Inteligencia artificial como potencia de herramienta en salud. Infodir, (36).
Koutroumpinas, P., Zhang, Y., Wallis, S., & Chang, E. (2021). An Artificial Intelligence Empowered Cyber Physical Ecosystem for Energy Efficiency and Occupation Health and Safety. Energies, 14(14), 4214.
Lamjid A, Anass A, Ennejjai I, Mabrouki J, Soumia Z. Enhancing the hiring process: A predictive system for soft skills assessment. Data and Metadata 2024;3:.387-.387. https://doi.org/10.56294/dm2024.387.
Lee, M. S., Grabowski, M. M., Habboub, G., & Mroz, T. E. (2020). The impact of artificial intelligence on quality and safety. Global Spine Journal, 10(1_suppl), 99S-103S.
Macías García, M. D. C. (2022). La inteligencia artificial para el entorno laboral. Un enfoque en la predicción de accidentes. e-Revista Internacional de la Protección Social, 7 (1), 84-101.
Macrae, C. (2019). Governing the safety of artificial intelligence in healthcare. BMJ quality & safety, 28(6), 495-498.
Majid AQHH, Rahim NFA, Teoh AP, Alnoor A. Factors Influencing the Intention to Use Human Resource Information Systems Among Employees of SMEs in Iraq. Data and Metadata 2024;3:.362-.362. https://doi.org/10.56294/dm2024.362.
Mark A. Sujan, Sean White, Ibrahim Habli, Nick Reynolds, (2022). Stakeholder perceptions of the safety and assurance of artificial intelligence in healthcare. Safety Science, 155, 105870.
Mosquera, R., Castrillón, O. D., & Parra, L. (2018). Predicción de riesgos psicosociales en docentes de colegios públicos colombianos utilizando técnicas de Inteligencia Artificial. Información tecnológica, 29(4), 267-280.
Muthusundari M, Velpoorani A, Kusuma SV, L T, Rohini O k. Optical character recognition system using artificial intelligence. LatIA 2024;2:98–98. https://doi.org/10.62486/latia202498.
Muthusundari S, Priyadharshii M, Preethi V, Priya K, Priyadharcini K. Smart watch for early heart attack detection and emergency assistance using IoT. LatIA 2024;2:109–109. https://doi.org/10.62486/latia2024109.
Niehaus, S., Hartwig, M., Rosen, P. H., & Wischniewski, S. (2022). An occupational safety and health perspective on human in control and AI. Frontiers in Artificial Intelligence, 5, 868382.
Pérez, S. P. M., Peña, J. G. M., & Vílchez, M. B. Q. (2022). Una revisión sobre el rol de la inteligencia artificial en la industria de la construcción. Ingeniería y competitividad: revista científica y tecnológica, 24(2), 1-23.
Pishgar, M., Issa, S. F., Sietsema, M., Pratap, P., & Darabi, H. (2021). REDECA: a novel framework to review artificial intelligence and its applications in occupational safety and health. International journal of environmental research and public health, 18(13), 6705.
Quesada AJF, Pacheco RH. Guidelines for writing software building reports. Gamification and Augmented Reality 2024;2:39–39. https://doi.org/10.56294/gr202439.
Riquelme-Benítez, C. R., & Pereira-Benítez, M. A. (2024). Inteligencia artificial como herramienta de organización de actividades profesionales y personales. Revista científica en ciencias sociales, 6, 41.
Rosa, N. G. D., Vaz, T. A., & Lucena, A. D. F. (2024). Carga de trabajo de enfermería: uso de inteligencia artificial para el desarrollo de modelo clasificador. Revista Latino-Americana de Enfermagem, 32, e4239.
Ross, P., & Spates, K. (2020). Considering the safety and quality of artificial intelligence in health care. Joint Commission Journal on Quality and Patient Safety, 46(10), 596.
Shah, I. A., & Mishra, S. (2024). Artificial intelligence in advancing occupational health and safety: an encapsulation of developments. Journal of Occupational Health, 66(1), uiad017.
Silić, M., & Palačić, D. (2024). Risk management model for the application of Artificial Intelligence in occupational health and safety. In 19th International Conference Management and Safety-M&S 2024 (pp. 92-101).
Sirvente A, Suarez EC, Pitre IJ. MeDHiME Methodology: potentiation of ova designs for learning. Gamification and Augmented Reality 2024;2:43–43. https://doi.org/10.56294/gr202443.
Swathi P, Tejaswi DS, Khan MA, Saishree M, Rachapudi VB, Anguraj DK. A research on a music recommendation system based on facial expressions through deep learning mechanisms. Gamification and Augmented Reality 2024;2:38–38. https://doi.org/10.56294/gr202438.
Swathi P, Tejaswi DS, Khan MA, Saishree M, Rachapudi VB, Anguraj DK. Real-time number plate detection using AI and ML. Gamification and Augmented Reality 2024;2:37–37. https://doi.org/10.56294/gr202437.
Tropiano, Y., & Noguera, A. (2024). La inteligencia artificial en la prevención de la seguridad y salud laboral en América. Revista Internacional y Comparada de Relaciones Laborales y Derecho del Empleo, 12(1).
Ullauri, V. G. L., Falconí, P. R. P., Nuñez, T. M. Z., & Machado, E. R. R. (2024). Impacto de la inteligencia artificial en salud publica. AlfaPublicaciones, 6(4), 158-173.
Vallejo-Noguera, F. F., & Rubio-Endara, O. W. (2022). Implementar el Uso de la Inteligencia Artificial para Detectar el Comportamiento del Trabajador en la Prevención de Accidentes Laborales en la Empresa. Dominio de las Ciencias, 8(1), 1035-1045.
Viña, J. G. (2024). El papel de la inteligencia artificial como herramienta de la inspección de trabajo y de la seguridad social en la lucha contra los accidentes de trabajo en España. Revista Trabalho, Direito e Justiça, 2(1), e63-e63.
Yafoz A. Drones in Action: A Comprehensive Analysis of Drone-Based Monitoring Technologies. Data and Metadata 2024;3:.364-.364. https://doi.org/10.56294/dm2024.364.
Zhang R, Sarmientor J, Ocampo ALD, Hernandez R. Fruit and vegetable self-billing system based on image recognition. Data and Metadata 2024;3:.397-.397. https://doi.org/10.56294/dm2024.397.
Published
Issue
Section
License
Copyright (c) 2024 Leidy Laura Castellón Simancas, Naywin Olascoaga Tous, Lorena Mischell Carriazo Mendoza, Camila Castrillon Ramirez, Carlos Alberto Severiche Sierra (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
The article is distributed under the Creative Commons Attribution 4.0 License. Unless otherwise stated, associated published material is distributed under the same licence.